Difference between revisions of "Machine Learning Experiments"

From Software Studies
Jump to navigation Jump to search
Line 61: Line 61:


===Workshop===
===Workshop===
*[https://www.vam.ac.uk/blog/museum-life/open-call-the-work-of-art-in-the-age-of-artificial-intelligence-workshop The Work of Art in the Age of Artificial Intelligence Workshop] (2018) by media art curator Natalia Fuchs and media artist Helena Nikonole
*[http://www.spacestudios.org.uk/art-technology/counting-to-4-0-1-2-3-data-collection-as-art-practice-protest/ Counting to 4: 0, 1, 2, 3 – Data Collection as Art Practice & Protest] (2017) by Caroline Sinders
*[http://www.spacestudios.org.uk/art-technology/counting-to-4-0-1-2-3-data-collection-as-art-practice-protest/ Counting to 4: 0, 1, 2, 3 – Data Collection as Art Practice & Protest] (2017) by Caroline Sinders



Revision as of 18:12, 17 July 2018

Introduction to Machine Learning

Cultural matters with Machine Learning

Technical explanation on Machine Learning

RNN focus

Neural Network

Examples with source code

Mixed media (text/image)

Text related

  • Chinese receipt OCR using Tensorflow | SpikeFlow (Blog | Github)
  • Recurrentjs by Andrej Karpathy, mainly for text training. "Sentences are input data and the networks are trained to predict the next character in a sentence." + his interview on why javascript and machine learning.
  • Re-appropriation of Recurrentjs by UCL Creative Hub

Image related

Sound related

Projects

Text related

Artworks

Examples/Performance/Speculative design

Exhibition

Workshop

Conference

Preconference Workshop] (2018)

Demo/Experimental Projects

Learning resource

Teaching Machine Learning

Experiments/Tests

  • 06/2018: Try running LSTM ml5js with training simplied chinese data. Source from weiboscope 2012 week 1 deleted text
weiboscope text
  • 06/2018: Running LSTM ml5js example with my own training data
Training Process
Outcome Process
  • 2018: Running ml5.js example - Simple LSTM Generator Example on a local browser
Predicting what's the text
  • Running ml5.js example - Simple Image Classification Example on a local browser
Predicting what's the image with confidence level
  • Running spam data with RecurrentJS on a local browser
Running spam data with RecurrentJS
  • Running a customized neural network on a local browser
Learning XOR with Synaptic
  • Running a PNG file with Synaptic.js on a local browser
Learning a png file with Synaptic
  • Running a jpg file with ConvNetJS on a local browser
Learning a jpg file with ConvNetJS